PENGEMBANGAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIS SISWA SD DENGAN DIDACTICAL ENGINEERING

  • Riandi Marisa Prodi Pendidikan Guru Sekolah Dasar Universitas Almuslim Bireun
  • Sarah Fazilla Jurusan Pendidikan Guru Madrasah Ibtidaiyah IAIN Lhokseumawe

Abstract

ABSTRAK

Berbagai penelitian, baik di tingkat internasional maupun nasional, mengungkapkan kemampuan pemecahan masalah siswa sekolah dasar masih sangat rendah. Padahal, kemampuan memecahkan masalah merupakan bagian dari kodrat manusia yang diciptakan oleh nalar, karena pada prinsipnya tidak ada manusia yang tidak berpikir. Potensi siswa sangat mungkin berkembang pada diri siswa jika guru sebagai jembatan pengetahuan benar-benar menguasai metode pembelajaran dan mengenali karakter siswa dalam pembelajaran matematika dengan baik. Oleh karena itu, dalam penelitian ini mencoba menerapkan strategi pembelajaran menggunakan Didactical Engineerering (DE), sebagai dasar untuk mengembangkan kemampuan pemecahan masalah siswa SD. Harapannya, pembelajaran menggunakan DE dapat berimplikasi pada pengembangan ilmu pedagogik yang sangat dibutuhkan oleh para guru, khususnya guru sekolah dasar.

References

Boaler, J. (1994). When Do Girls Prefer Football to Fashion? An Analysis of Female Underachievement in Relation to “realistic” Mathematic contexts. British Educational Research Journal, Vol. 20, No. 5, hlm. 551-564
Brousseau, G. (2002). Theory of Didactical Situations in Mathematics. Dalam Mathematics Education Library Vol. 19. New York: Kluwer Academic Publisher.
Brousseau, G. (2008). Research in Mathematics Education. Dalam M. Niss (Ed.), Proceedings of The 10th International Congress on Mathematical Education (p. 244-254). IMFUFA: Denmark.
Brousseau, G., Brousseau, N., & Warfield, G. (2014). Teaching fractions through situations: A fundamental experiment. Dordrecht, Heidelberg, New-York, London: Springer.
Canu, M., Duque, M. & Hosson, C. (2016): Active Learning session based on Didactical Engineering framework for conceptual change in students’ equilibrium and stability understanding, European Journal of Engineering Education, DOI: 10.1080/03043797.2016.1190689
Casabò, M. B. & Farràs, B. B. (2013). Didactical Engineering as a Research Methodology: the TDS Programme and Its Developments. ICMI Study 22 – Task Design
Creswell, J. W. (2012). Educational Research: Planning, Conducting, and EvaluatingQuantitative and Qualitative Research – 4 ed. Pearson
Danek A. H., Wiley, J. & öllinger, M. (2016). Solving Classical Insight Problems Without Aha! Experience: 9 Dot, 8 Coin, and Matchstick Arithmetic Problems. Journal of Problem Solving. Vol. 9, hlm. 47-57
Doorman, M., Drijvers, P., Gravemeijer, K., Boon, P., & Reed, H. (2012). Tool use and the development of the function concept: From repeated calculations to functional thinking. International Journal of Science and Mathematics Education, 10, 1243–1267.
Gibney, T. (2010). The Gifted as Problem Solvers In Elementary Schools. Roeper Review, 4:4, 13-14, doi: 10.1080/02783198209552622
Godino, J. D., Batanero. C., Contreras, A., Estepa, A., Lacasta, E. & Wilhelmi, M. R. (2013). Didactic Engineering as Design-Based Research in Mathematics Education. EDU2012-31869, Ministry of Economy and Competitiveness (MEC), Madrid
González-Martín, A. S., Bloch, I., Durand-Guerrier, V., & Maschieeto, M. (2014). Didactic Situations and Didactical Engineering in University Mathematics: Cases from the study of calculus and proof. Dalam Research in Mathematics Education, 16(2) 117-134. doi:10.1080/14794802.2014.918347
Jacobsen, D.A., Eggen, P., & Kauchak, D. (2009). Methods for Teaching: Metode-metode Pengajaran Meningkatkan Belajar Siswa TK-SMA. Yogyakarta: Pustaka Pelajar.
Kizilirmak, J. M., Wiegmann, B., & Klavehn, A. R. (2016). Problem Solving as an Encoding Task: A Special Case of the Generation Effect. Journal of Problem Solving. Vol. 9, hlm. 59-76
Lima, R.M, Andersson, P. H. & Saalman, E. (2016). Active Learning in Engineering Education: a (re)introduction. European Journal Of Engineering Education, doi.org/10.1080/03043797.2016.1254161
Margolinas, C. & Drijvers, P. (2015). Didactical Engineering in France; an insider’s and an outsider’s view on its foundations, its practice and its impact. ZDM Mathematics Education 47:893-903. DOI 10.1007/s11858-015-0698-z
Mielicki, M. K. & Wiley, J. (2016). Alternative Representations for Algebraic Problem Solving: When Are Graphs Better Than Equations?. Journal of Problem Solving. Vol. 9, hlm. 3-12
National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. North Carolina: NCTM.
Perrin-Glorian, M. J. (2011). L’ingénierie didactique à l’interface de la recherche avec l’enseignement. Vers une ingénierie didactique de deuxième génération? In C. Margolinas, M. Abboud-Blanchard, L. Bueno-Ravel, N. Douek, A. Fluckiger, P. Gibel, F. Vandebrouck, & F. Wozniak (Eds.), En amont et en aval des ingénieries didactiques (pp. 57–77). Grenoble: La pensée sauvage.
Pierce, J.W. & Jones, B.F. (2001). Problem-based learning: Learning and teaching in contex of problems. In K.R. Howey, S. Sears, R. Berns, J. S. Stefano, & S. Pritz, Contextual Teaching and Learning to Enhanche Students Success in the Workplace and Beyond. Colombos, Ohio: ERIC Clearinghouse on Teaching and Teacher Education.
Prediger, S. (2008). The Relevance of Didactic Categories for Analysing Obstacles in Conceptual Change: Revisiting the Case of Multiplication of Fractions. Dalam Learning and Instruction, 18(1), 3-17. Doi:10.1016/j.learninstruc.2006.08.001.
Rasmussen, C. L. & King, K. D. (2000). Locating Starting Points in Differential Equations: A Realistic Mathematics Education Approach. International Journal Mathematics Education Science and Technology, Vol. 31. No. 2. hlm. 161-172
Suryadi, D. (2007). Pendidikan Matematika. Dalam Ali, M., Ibrahim, R., Sukmadinata, N.S., Suidjana, D., dan Rasjidin, W. (Penyunting). Ilmu dan Aplikasi Pendidikan: Handbook. Bandung: Fipupi Press.
Suryadi, D., Nishitani, I., Koseki,K., & Ohtake, K. (2001). Mathematical Problem Solving and Primary School Children: Some Essensial Issues, Gunma: Gunma. U. Ac. Jp.
Syaiful, Kusumah, Y. S., Sabandar, Y., dan Darhim (2011). Peningkatan Kemampuan Pemecahan Masalah Matematis melalui Pendekatan Matematika Realistik. Prosiding Seminar Nasional Penelitian Pendidikan dan Penerapan MIPA Fakultas MIPA Universitas Negeri Yogyakarta. 14 Mei 2011. hlm. 215
Szabo, A. & Andrews, P. (2017): Uncovering the Relationship Between Mathematical Ability and Problem Solving Performance of Swedish Upper Secondary School Students, Scandinavian Journal of Educational Research, doi: 10.1080/00313831.2016.1258671
Szetela, W. & Nicol, C. (1992). Evaluating Problem Solving in Mathematics. Educational Leadership. hlm. 42-45
T. Gök & I. Silay (2010). The Effects of Problem Solving Strategies on Students’ Achievement, Attitude and Motivation. Lat. Am. J. Phys. Educ. Vol. 4, No. 1, hlm. 7-21
Trends in International Mathematics and Science Studies (2007). [online]. Tersedia: http://timss.bc.edu/timss2007/PDF/T07_S_IR_Chapter1.pdf. [30 Januari 2017]
Published
2020-12-30
How to Cite
Marisa, R., & Fazilla, S. (2020, December 30). PENGEMBANGAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIS SISWA SD DENGAN DIDACTICAL ENGINEERING. ITQAN : Jurnal Ilmu-Ilmu Kependidikan, 11(2), 139-158. https://doi.org/https://doi.org/10.47766/itqan.v11i2.1012